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Theoretical studies of mean field electrodynamics for diffusive processes in the electron
magnetohydrodynamic !EMHD" model is presented. In contrast to magnetohydrodynamics !MHD",
the evolution of the magnetic field here is governed by a nonlinear equation in magnetic field
variables. A detailed description of diffusive processes in two dimensions are presented in this
paper. In particular, it has been shown analytically that the turbulent magnetic field diffusivity is
suppressed from naive quasilinear estimates. It is shown that for complete whistlerization of the
spectrum, turbulent diffusivity vanishes. The question of whistlerization of the turbulent spectrum is
investigated numerically, and a reasonable tendency towards whistlerization is observed. Numerical
studies also show suppression of magnetic field diffusivity in accordance with analytical estimates.
© 2000 American Institute of Physics. #S1070-664X!00"02901-3$

I. INTRODUCTION

Transport and amplification properties of a large-scale
magnetic field remains an area of active investigation. This is
primarily due to its relevance in a variety of physical phe-
nomena. For example, the existence of the magnetic field in
the universe is understood on the basis of an amplification
process by some kind of dynamo mechanism. Another inter-
esting phenomenon is the release of high-energy bursts in
solar flares, etc.1 This is believed to occur as a result of the
reconnection of magnetic fields, which can happen in the
presence of finite diffusivity. However, there is only modest
quantitative understanding of these processes. The amount of
magnetic energy released by reconnection depends on the
value of diffusivity, which turns out to be too small to pro-
vide an explanation of the vast energy released in these
bursts. There have been attempts then to understand these
phenomenon on the basis of turbulent magnetic field diffu-
sivity, which is directly related to the question of transport of
a large-scale magnetic field in the presence of turbulence.2–5
Most theories put forward in these areas are cast within the
magnetohydrodynamic !MHD" system. Lately, however,
there has been some work which makes use of models per-
taining to faster time scales.6 It is on this regime that we are
going to focus here.

In this work we address the question of diffusion of a
long-scale magnetic field in the presence of small-scale tur-
bulent magnetic fluctuation ocurring at time scales which are
faster than the ion response time. For such phenomena, the
evolution of the magnetic field is governed by electron flow
velocity. Ions being stationary, the flow velocity of electrons
determines current and hence is directly related to the curl of
magnetic field. Thus unlike MHD, in this approximation,
heretofore referred as electron magnetohydrodynamic
!EMHD" approximation, the magnetic field itself evolves
through an explicitly nonlinear equation. This should be con-
trasted with the MHD model in which nonlinear effects creep

indirectly through the Lorentz force operating on the plasma
flow.

This paper is organized as follows. In Sec. II we present
the salient features of the electron magnetohydrodynamics
!EMHD" model. In Sec. III we study the evolution of the
mean magnetic field in two dimensions within the frame-
work of the EMHD description. In two dimensions there is
no amplification of the large-scale field; it can only diffuse.
We obtain an expression for the effective diffusion coeffi-
cient and show that it is suppressed from the naive quasilin-
ear estimates. For complete whistlerization, i.e., when turbu-
lence is comprised only of randomly interacting whistler
waves !whistler modes being the normal modes of EMHD
model", we show that there is no turbulent contribution to
diffusivity. This then raises the pertinent question about the
constituents of turbulent state in this particular model. It be-
comes important to know whether the turbulent state is com-
prised entirely of randomly interacting whistler waves, or
merely a collection of random eddies, or a combination of
both whistlers and eddies represent the true scenario. We
address these question in Sec. IV by numerically simulating
the case of decaying turbulence for EMHD equations. The
initial condition is chosen to be random, i.e., no whistlers to
begin with. The study of the final state reveals evidence of
whistlerization. In Sec. V we numerically investigate the
problem of diffusion, which shows suppression of magnetic
field diffusivity, essentially confirming our analytical find-
ings of Sec. III. Section VI contains discussion and conclu-
sion.

II. THE MODEL

Electron magnetohydrodynamics !EMHD" is the theory
to describe the motion of a magnetized electron fluid in the
presence of self-consistent and external electric and magnetic
fields. Such a theory is applicable when time scales of inter-
est are fast !e.g., lying between electron and ion gyrofrequen-
cies" so that ions being massive and unmagnetized play a
passive role as a neutralizing background, and the dominanta"Permanent address: Institute for Plasma Research, Gandhinagar, India.
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role in dynamics is played by a strongly magnetized electron
species. Phenomena having such time scales are often en-
countered in a number of plasma operated devices !e.g.,
switches, focusing devices, fast Z-pinches, etc.".7 Moreover,
in the description of collisionless magnetic reconnection8,6 as
well as in certain problems related to ionosphere, EMHD
paradigm is invoked frequently. The entire whistler physics
is premised on the EMHD regime of dynamics.

The EMHD model is obtained by using !i" the electron
momentum equation; !ii" current expressed in terms of elec-
tron velocity J!"eneve as ions are stationary at fast time
scales depicted by this model; and !iii" Ampere’s law, where
displacement current is ignored under the assumption (%
#%pe

2 /%ce). The magnetic field then evolves according to
the following equation:

&

&t !'$P"!'$„ve$!'$P"…"me('$ve . !1"

Here me and ve are electron mass and velocity, respectively,
P is canonical momenta defined as P!meve"eA/c !A being
vector potential of the magnetic field", and ( represents elec-
tron ion collision frequency. Using the relationship between
current and electron velocity we obtain '$P!e(de

2'2B
"B)/c , where de!c/%pe is the skin depth.

It is clear from Eq. !1" that (de
2'2B"B) is frozen in the

electron fluid flow. In the limit when electron inertia can be
ignored, magnetic field lines are carried along with the elec-
tron fluid. Since ve)"'$B, the evolution equation for the
magnetic field is nonlinear in B. This can be contrasted with
the MHD model where the magnetic field evolution is gov-
erned by an equation which is intrinsically linear in B. In
MHD, the nonlinear effects then arise as a result of back
reaction on fluid flow through Lorentz force terms. Basically,
in EMHD ve)"'$B, and so electron flow is directly re-
lated to the instantaneous magnetic field, whereas in MHD
the evolution of flow velocity v depends on the magnetic
field through Lorentz force term and hence v has a memory
of the past magnetic field configuration. The MHD model is
applicable for scale lengths which are longer than the ion
skin depth. The EMHD, on the other hand, depicts phenom-
enon having scale lengths shorter than the ion skin depth.
Another distinction from MHD arises due to the presence of
an intrinsic scale, viz., electron skin depth de!c/%pe in the
EMHD model, which separates the two regimes: one in
which electron inertia is important, and the other where elec-
tron inertia plays no role. The character of EMHD evolution
equations changes in these two disparate regimes of scale
lengths.

In two dimensions !i.e., when variations are confined in
x"y plane" Eq. !1" can be simplified and cast in terms of
two scalar variables * and b, which define the total magnetic
field by the expression B! ẑ$'*%bẑ . The following
coupled set then represents the evolution of these scalar vari-
ables:

&

&t !*"'2*"% ẑ$'b•'!*"'2*"!+'2* , !2"

&

&t !b"'2b "" ẑ$'b•''2b% ẑ$'*•''2*!+'2b .

!3"
Here we have chosen to normalize length by electron skin
depth de!c/%pe , magnetic field by a typical amplitude B0 ,
and time by the corresponding electron gyrofrequency. In the
nonresistive limit, the above coupled equations support the
following quadratic invariants,

E!
1
2 ! #!'*"2%b2%!'2*"2%!,b "2$ dxdy ,

which represents total energy !sum of the magnetic and the
kinetic energy",

H!! !*"'2*"2 dxdy ,

the mean square magnetic potential, and

K!! !*"'2*"!b"'2b " dxdy ,

the cross helicity. The fields b and * are chosen to be uncor-
related initially in our numerical simulations. On the basis of
the existence of these quadratic invariants it can be inferred
that the mean square magnetic potential cascades towards
longer scale. We will be making use of this later in our
derivation for turbulent diffusivity.

Linearizing the evolution equations in the presence of
the uniform magnetic field B0 pointing in the y direction
leads to following dispersion relation

%!&
kkyde

2%ci

!1%k2de
2"

for whistlers, the normal mode of oscillations in the EMHD
regime. It is clear from the dispersion relation that the propa-
gation of these waves is preferentially parallel to the mag-
netic field. Furthermore, whistler wave excitations lead to a
coupling of the form bk!&k*k between the two perturbed
fields. This relation between perturbed fields then leads to an
equipartition between energy associated with poloidal and
axial fields. An initial unequal distribution of energy in the
poloidal and axial fields ultimately has a tendency towards
redistribution and achieving equipartition as a result of the
whistlerization of the spectrum. It is observed that time as-
ymptotically the turbulent state in EMHD consists of a gas of
whistlers interspersed with a collection of random eddies.

There has been considerable interest lately to understand
the features of EMHD turbulence both in two and three di-
mensions in terms of power spectra and cascade properties of
square invariants supported by the model.9 Our attempt here,
however, is to understand the role of EMHD turbulence in
determining the diffusion of long-scale magnetic field.

III. SUPPRESSION OF TURBULENT MAGNETIC
DIFFUSIVITY IN 2D

In this section we concentrate on the transport of mag-
netic field in two dimension. In 2D the magnetic field can

171Phys. Plasmas, Vol. 7, No. 1, January 2000 Theory of two-dimensional mean field electron . . .



only diffuse, thus our endeavour here is to estimate the ef-
fective magnetic diffusivity in the presence of turbulence.

We will concentrate here on turbulent scale lengths
longer than electron skin depth. In this regime of scale
lengths, i.e., for kde#1 electron inertia effects are unimpor-
tant and as mentioned in earlier section magnetic field lines
are frozen in electron fluid flow. Thus turbulence in electron
velocity leads to the diffusion of magnetic flux. This diffu-
sion of magnetic field lines, arising as a result of turbulence
and not due to resistivity, is termed as turbulent diffusivity of
the magnetic field. The effective turbulent diffusivity would
thus depend on electron fluid flow velocity. A naive quasi-
linear estimate would thus predict that magnetic field diffu-
sivity -).ve

2).('b)2, where . is some averaged correla-
tion time for electron flow velocity ve! ẑ$'b in x"y
plane, and b is the z component of turbulent small scale
magnetic field. This suggests that magnetic field diffusion in
the x"y plane is solely determined by turbulent properties
of the z !i.e., the axial" component of the magnetic field.
However, this does not represent the complete picture. We
will now show that the presence of small-scale turbulence in
the poloidal magnetic field results in the suppression of such
estimates of diffusivity. This is similar to the work carried
out by Gruzinov,10 Cattaneo,11 and others in the context of
MHD. In MHD magnetic field lines are tied to plasma flow
velocity. It is observed that magnetic field diffusivity is sup-
pressed from the quasilinear estimates given solely in terms
of plasma flow velocity. The presence of small-scale turbu-
lence in the magnetic field, which opposes the fluid motion
through J$B backreaction, is found to be responsible for
such a suppression.

We choose to represent the small-scale turbulence in
fields b and * as

b!x ,t "!/
k
bk! t " exp ! ik•r",

*!x ,t "!/
k

*k! t " exp ! ik•r".
In addition to this, we assume the existence of a large-scale
magnetic field pointing along the y direction characterized by
magnetic stream function of the following form

*0!*q exp ! iqxx "%c.c.

This magnetic field has a scale length q"1'k"1 and, hence,
when considering averaging over the scale of turbulence, this
field can be essentially treated as constant in space. We are
interested in understanding the process of diffusion of this
long-scale field in the presence of small-scale turbulence in
variables b and *, i.e., we seek an equation of the kind

&*q

&t !"-qx
2*q , !4"

and are interested in determining - in terms of the properties
of small-scale turbulence. The qth Fourier component of Eq.
!2" yields

!1%qx
2"
d*q

dt %0 ẑ$'b•'!*"'2*"1q!"+qx
2*q . !5"

Here the second term signifies generation of qth mode as a
result of nonlinear coupling between high-k turbulent fields.
The angular brackets indicate an ensemble average. The
above equation can be rewritten as

!1%qx
2"
d*q

dt %iq•0 ẑ$'b!*"'2*"1q!"+qx
2*q .

We denote 0 ẑ$'b(*"'2*)1q by ! representing the non-
linear flux. Since qy!0, iq•!!iqx!x . The suffix x stands
for the x component. Now

2x" "
&b
&y !*"'2*"#

q
!"/

k
iky!1%k1

2"0bk*k11,

where k1!q"k .
To estimate the correlation 0bk*k11 we make use of a

quasilinear approximation where each of these fields is gen-
erated from the other through interaction with the large-scale
field. Thus we can write

0bk*k11!0bk3*k11%03bk*k11,

where it is understood that 3*k1 is the magnetic perturbation
in the plane arising as a result of turbulent stretching of the
mean magnetic field by the electron flow velocity ẑ$kbk ;
and 3bk is the perturbation in electron flow !viz. ẑ$k3bk"
arising from the Lorentz force ẑk1

2*k1$ ŷqx*q . It should be
noted here that the first term corresponds to that derived
from a kinematic treatment, wherein the response of the
magnetic field on the flow is not considered. The second
term takes account of the back reaction of the magnetic field
on the electron velocity. Thus, dropping the second term
would be tantamount to a purely kinematic approximation.
We will now show that the second term leads to a significant
suppression of the estimates of diffusivity obtained purely
from the kinematic treatment. The equations for 3bk and
3*k1 are

!1%k1
2"!"i%k%3%k"3*k1

!"+k1
23*k1"ikyb"kiqx!1%q2"*q

and

!1%k2"!"i%k%3%k"3bk

!"+k23bk"iky1!k1
2"q2"*"k1iqx*q .

Here % represents the linear frequency and 3% stands for the
eddy decorrelation effect arising from coherent mode cou-
pling. Substituting the above expression for 3bk and 3*k1,
we obtain the following expression for the nonlinear flux:

2x!"/
k

„.k!ky2$bk$2"k1y
2 k1

2$*k1$
2"…iqx*q , !6"

where

.k!
1

!1%k2"!"i%k%3%k"%+k2 .

Here .k represents the spectral correlation time for turbulent
fields. We have assumed that turbulent scales are much
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longer compared to electron skin depth !i.e., k#1" in the
above derivation. The evolution equation for *q under the
approximation q#k#1 can then be written as

d*q

dt !"qx
2%/

k
.kky

2! $bk$2"k2$*k$2"&*q"+qx
2*q . !7"

The factor inside the square bracket on the right-hand side of
the above equation represents the turbulent contribution to
diffusivity. It is made up of two parts. The first part, depend-
ing on ky

2$bk$2, represents the kinematic contribution and the
second part arises as a result of small scale turbulence in the
poloidal component of the magnetic field. It is clear that
turbulence in the poloidal component of the magnetic field
contributes towards suppressing magnetic field diffusivity. It
should be noted here that for complete whistlerization, spec-
tral components of the two fields would be related as bk
!&k*k , for which turbulent diffusivity vanishes exactly.
For this extreme case, diffusion of *q is determined by re-
sistivity alone. It appears, then, that understanding of the
question of whistlerization of the spectrum in the turbulent
state is of paramount importance. We will study this issue in
the next section.

We rewrite Eq. !7" as

d*q

dt !"qx
2/

k
.k!0vx

21k"k20B̃x
21k"*q"+qx

2*q

!"
qx
2

2 /
k

.k!0v21k"k20B̃21k"*q"+qx
2*q. !8"

In the above expression B̃x is the x component of the turbu-
lent field. In writing the second equality, we have assumed
that turbulence is isotropic. Thus we can write

-!/
k

.k
2 !0v21k"k20!,*"21k"%+ .

The kinematic diffusivity -0 would be just -0!4k.kvk
2/2

%+ , dependent on turbulent velocity alone. We can then
express - in terms of kinematic diffusivity, as -!-0
"4k.kk20('*)21k/2. Following Gruzinov et al. we assume
an equivalence of correlation times !i.e., assume .k!. for
each mode" and write -!-0".0k210('*)21/2. To estimate
0('*)21 we use stationarity of mean square magnetic poten-
tial. This can be justified on the basis of the inverse cascade
property of the magnetic mean square potential. At longer
scales, the dissipation due to resistivity is small and the as-
sumption of stationarity of the mean square potential is rea-
sonably good. We multiply Eq. !2" by * and take on en-
semble average. This yields

" *
d*

dt # !
1
2 " d*2

dt # !0,

0* ẑ$'b•'*1! 1
2'•0 ẑ$'b*21!0.

We thus obtain

+0!'*"21!B0" *
&b
&y # !-B0

2.

Substituting for 0('*)21 and writing ./2 as -0 /0v21
!-0 /0('b)21 we obtain

-!
-0

1%0k21-0B0
2/+0!'b "21

!
-0

1%Rm0k21B0
2/0v21

. !9"

Here Rm is the magnetic Reynold’s number. It is clear that
for Rm'1, suppression of magnetic field diffusivity occurs
even when the turbulent velocity is larger than the effective
whistler speed in the presence of B0 .

IV. WHISTLERIZATION

We have observed in an earlier section that for a turbu-
lent state which is a collection of whistlers alone, the effec-
tive turbulent diffusivity goes to zero. Thus it is of signifi-
cance to understand the whistlerization of turbulent spectra.
This is identical to studying the question of Alfvénization in
the context of the MHD model. It is interesting to note, how-
ever, that in the MHD model Alfvénization leads to an equi-
partition between the magnetic and fluid energies. However,
there can be no equipartition between magnetic and kinetic
energies as a result of the whistlerization of the spectrum.
Here, the dominance of magnetic or kinetic energies is de-
pendent on whether the typical scales of the turbulence are
longer or shorter than the electron skin depth, respectively.
In this paper we have concentrated on the case where turbu-
lent scales are much longer compared to the electron skin
depth. Thus the total energy is predominantly magnetic.
Whistlerization of the spectrum then basically leads to an
equipartition between poloidal and axial field energies.

We seek to understand the question of whistlerization by
carrying out numerical simulation. We evolve the two fields
* and b by Eq. !2" and Eq. !3", respectively, using a fully
dealiased pseudospectral scheme. In this scheme, fields b and
* are Fourier decomposed. Each of the Fourier modes are
then evolved, the linear part exactly, whereas the nonlinear
terms are calculated in real space and then Fourier trans-
formed in k space. This requires going back and forth in real
and k space at each time step. Fast Fourier transform !FFT"
routines were used to go back and forth in real and k space at
each time integration. Time stepping is done using a predic-
tor corrector with a midpoint leap frog scheme. Simulation
was carried out with a resolution of 128$128 modes, as well
as at a higher resolution of 256$256 modes. The initial
spectrum of two fields b and * was chosen to be concen-
trated on a band of scales and their phases were taken to be
random. The two fields were chosen to be entirely uncorre-
lated to begin with.

In Fig. 1 we show a plot $bk$ vs. $k*k$ for the initial
spectrum. It is clear from the figure that the initial spectrum
is totally different from a spectrum of whistler waves, which
in turn would have shown up in the figure as a straight line
passing through the origin with the unit slope basically de-
picting the relationship $bk$!$k*k$ being obeyed. In Figs. 2
and 3 we plot for the evolved spectrum $bk$ vs. $k*k$ for
B0!0 and 0.5, respectively. It is clear that most of the points
now cluster close to the origin. It is suggestive, when con-
trasted with the initial condition of Fig. 1, that the modes are
trying to acquire a whistler wave relationship. The scatter in
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the plot indicates that both eddies and whistlers constitute the
final state. Thus a quantitative assessment of the turbulent
state as regards whistlerization of the spectra is required. For
this purpose we introduce a variable

wk!
abs! $bk$2"k2$*k$2"

! $bk$2%k2$*k$2"
, !10"

which essentially indicates the fractional deviation of kth
mode from being whistlerized. In Table I we list the fraction
of modes in the spectrum for which wk is within certain
percentage.

It is clear from Table I that the initial state had zero
fraction of modes having deviations, wk even up to 10%; in
the final state, a reasonable fraction of modes acquire whis-

tlerization within a certain percentage of deviation, as mea-
sured by the parameter wk . We also introduce an integral
quantity signifying overall whislerization as w
!5wk dk/5dk . For a completely whistlerized spectrum, the
variable w would take a value of 0, and the maximum value
that w can have is unity. For our initial spectrum w
!0.9957, after evolution !i" for B0!0 !corresponding to
Fig. 1", w!0.5020, and !ii" for B0!0.5 !Fig. 2" w
!0.4912. More detailed studies of this kind, addressing the
evolution of whislerization with time !e.g., by studing how w
evolves with time", its dependence on external magnetic
field, etc., will be presented in a subsequent publication.12
The question of Alfvénization of the spectrum in the context
of MHD is also being pursued along similar lines and will be
presented elsewhere.

It is clear from our studies that whistlerization of spec-
trum is not complete. Random eddies are also present in the
evolved spectrum. This deviation from the whistler wave re-
lationship contributes towards the residual effective turbulent
diffusivity of magnetic field lines. In the next section we will
carry out a numerical study to determine the diffusivity of
the magnetic field in the presence of turbulence.

FIG. 1. Plot of $bk$ vs. $k*k$ for the initial spectrum.

FIG. 2. Plot of $bk$ vs. $k*k$ for the evolved spectrum when the external
field B0!0.

FIG. 3. Plot of $bk$ vs. $k*k$ for the evolved spectrum when the external
field B0!0.5.

TABLE I. Quantitative whistlerization.

Permissible
% deviation

Fraction of modes whistlerized

Initial
condition

Evolved state
B0!0

Evolved state
B0!0.5

2.5 0 0.028 0.031
5 0 0.053 0.054
7.5 0 0.077 0.080
10 0 0.101 0.102
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V. NUMERICAL RESULTS ON DIFFUSION

We saw in Sec. III that the final expression of effective
diffusivity that we obtained was based on the fact that effec-
tive correlation times of interacting modes were ultimately
the same for each of them. Whether this really happens can
only be verified by a fully nonlinear numerical simulation.
We have carried out a set of numerical studies to investigate
the question of magnetic diffusivity. We observe that the
results of our investigation agree with the expression that we
have obtained earlier, thereby suggesting that the ansatz of
the local equivalence of the correlation time is indeed cor-
rect.

The numerical scheme is the same as outlined in the last
section. However, in addition to evolving the two fields b
and *, a number of tracer particles (N!1600) were placed
in the two-dimensional spatial x"y region of integration.
The particles were initially placed uniformly in x"y plane,
and were then evolved using the Lagrangian electron veloc-
ity at their location !viz. ẑ$'b". Since magnetic field lines
are tied to electron flow velocity, the behavior of magnetic
field diffusivity can be discerned from diffusion of these par-
ticles. Thus the averaged mean square displacement of these
particles is used as a measure of magnetic diffusivity #e.g.,
-!d0(3x)21/dt$. This method of evaluating the tracer par-
ticle diffusivity to study the diffusion of magnetic fields in
two dimensions has been adopted by Cattaneo in the context
of the MHD model.11

It is clear that for +60 and an initial distribution of
power with random phases in various modes for the two
fields b and *, Eqs. !2" and !3" represent the case of ‘‘decay-
ing’’ EMHD turbulence. We refrain from using a random
stirring force to achieve the stationary state, as this might
lead to the particle displacement being dependent on the
characteristics of the random stirrer. We will here investigate
the case of decaying turbulence and we will present results in
the regime where variations can be considered as slow i.e.,
we treat the problem in the quasistatic limit.

The derivation of our main Eq. !9" for suppression of
magnetic field diffusivity was premised on the notion of the
stationarity of the mean square magnetic potential. As dis-
cussed earlier, the cascade of the mean square magnetic po-
tential towards longer scales ensures attaining such a state.
This can be clearly seen in Fig. 4, which shows evolution of
the mean square magnetic potential with time. It is clear that
the percentage variation in 5*2 dxdy is small after t!200.
For the purpose of our calculations, we have restricted all our
numerical runs to the region where the percentage variations
in 5*2 dxdy is below 3%.

In Fig. 5 we show the mean square displacement of
tracer particles with time. The thick line indicated by the
label ‘‘kinematic’’ essentially corresponds to the displace-
ment when the uniform magnetic field in y direction B0 is
chosen to be zero. We will designate the slope of this curve
as -kin , the kinematic diffusivity. The other two lines essen-
tially correspond to the longitudinal and transverse displace-
ment in the presence of a uniform magnetic field B0!1
along the y direction. It is clear from the figure that the slope
of the kinematic curve is larger than the other two curves

which correspond to the displacement for finite B0 . This
clearly indicates that the presence of B0 suppresses diffusiv-
ity, a conclusion we arrived at earlier in the last section.
However, longitudinal displacements of tracer particles are
larger compared to their transverse displacement, suggesting
that the assumption of isotropic turbulence is not valid in the
presence of uniform magnetic field. There has been indica-
tions in earlier works, both in MHD13 as well as in EMHD,12
that the presence of strong magnetic field results in anisot-
ropy of the spectrum. Our results showing distinct values for
longitudinal and transverse diffusivity is another piece of

FIG. 4. Evolution of mean square magnetic potential.

FIG. 5. Mean square displacement of the tracer particles with time is shown,
thick lines !kinematic" shows the displacement in the absence of any exter-
nal field. The other two lines indicated by ‘‘longitudinal’’ and the ‘‘trans-
verse’’ show the mean square displacement of the tracer particles along and
across the external magnetic field B0!1.
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evidence for anisotropic turbulence in the presence of an
external magnetic field.

We next investigate the question whether suppression of
diffusivity with an increasing magnetic field is indeed given
by the kind of expression #Eq. !9"$ that we have obtained in
the earlier section. For this purpose we carry out several
numerical runs with varying strength of the magnetic field
B0 . The diffusivity - for each case is then given by the slope
of the displacement of tracer particles. It is clear from Fig. 5
that the curve is jagged, essentially signifying that -, the
diffusivity estimated from the slope of such a curve, is a
statistical quantity. We take a time average given by

-! t2"t1"!
1

t2"t1
!
t1

t2
-! t " dt .

The choice of t2"t1 is such that, in this duration, turbulence
can essentially be treated as quasistationary. The averaging
procedure eliminates statistical fluctuation in the estimate of
diffusity and it is observed that with varying t2 the value of
the slope asymptotes to a constant for each case.

In Fig. 6 the y axis represents -kin /- and along the x
axis we vary B0

2. It is clear from the plot that data points
nicely fit a straight line, as our analytical expression predicts.

VI. DISCUSSION

There are two important results of our present work.
First, we have been able to show that the turbulent EMHD
state shows tendencies towards whistlerization. The spec-
trum is only partially whistlerized, suggesting that both ed-
dies and randomly interacting whistlers constitute the turbu-
lent state. Second, we have carried out studies to understand
the diffusion of the long-scale magnetic field in the context
of electron magnetohydrodynamics. We have shown that the
effective diffusivity due to turbulence in the electron flow
velocity is suppressed in the presence of a small-scale turbu-
lence of the magnetic field. For complete whistlerization the

turbulent diffusivity vanishes. However, since the turbulent
state is only partially whistlerized, the effective diffusivity
does not vanish, it only becomes suppressed from pure kine-
matic estimates. We have confirmed these results numeri-
cally.

The problem of diffusion of magnetic field is of great
interest, as it provides a mechanism for the reconnection of
magnetic field lines, which is thought to underlie an under-
standing of the rapid release of energy in several solar and
astrophysical contexts. The resistive diffusion turns out to be
too small to explain the large amount of energy released.
This had initiated efforts towards understanding the phenom-
enon of turbulent diffusivity of magnetic field lines. Earlier
attempts on this were based on the magnetohydrodynamic
approximation. However, it was shown theoretically by
Gruzinov et al.10 and numerically by Cattaneo11 that the
value of turbulent diffusivity is suppressed in the presence of
turbulence in a small-scale magnetic field. Recently, attempts
to understand the reconnection phenomenon in the context of
electron magnetohydrodynamics were made.8,6 Our work in
this context becomes relevant, as we have shown here that
the naive quasilinear estimates do not provide a complete
picture. The effective diffusivity is suppressed in the pres-
ence of turbulent magnetic fields, with whistlerization of the
spectrum playing an important role in this regard.

Another issue that we would like to point out in this
regard is about the role of whistlers in EMHD turbulence.
Some recent studies on EMHD turbulence categorically rule
out the presence of the whistler effect in determining the
energy transfer rate on the basis of numerically observed
scaling of the power spectrum.9 We have, on the other hand,
shown here that there is a tendency towards whistlerization
of the turbulent spectra which directly influences the effec-
tive diffusivity of magnetic field lines. Invoking the Prandtl
mixing length argument, which relates the transfer rate to the
effective diffusivity, the question of the whistler effect being
present or not remains debatable. Moreover, we also have
evidence of anisotropization of the turbulent spectrum in the
presence of external magnetic field,12 which further points
towards a subtle role of whistlers in governing EMHD tur-
bulence.
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